Evidence that smooth pursuit velocity, not eye position, modulates alpha and beta oscillations in human middle temporal cortex.
نویسندگان
چکیده
Suppression of 5-25 Hz oscillations have been observed in MT+ during pursuit eye movements, suggesting oscillations that play a role in oculomotor control and/or the integration of extraretinal signals during pursuit. The amplitude of these rhythms appears to covary with head-centered eye position, but an alternative is that they depend on a velocity signal that lags the movement of the eyes. To investigate, we explored how alpha and beta amplitude changes related to ongoing eye movement depended on pursuit at different eccentricities. The results revealed largely identical patterns of modulation in the alpha and beta amplitude, irrespective of the eccentricity at which the pursuit eye movement was performed. The signals we measured therefore do not depend on head-centered position. A second experiment was designed to investigate whether the alpha and beta oscillations depended on the direction of pursuit, as opposed to just speed. We found no evidence that alpha or beta oscillations depended on direction, but there was a significant effect of eye speed on the magnitude of the beta suppression. This suggests distinct functional roles for alpha and beta suppression in pursuit behavior.
منابع مشابه
Cortical oscillatory changes in human middle temporal cortex underlying smooth pursuit eye movements.
Extra-striate regions are thought to receive non-retinal signals from the pursuit system to maintain perceptual stability during eye movements. Here, we used magnetoencephalography (MEG) to study changes in oscillatory power related to smooth pursuit in extra-striate visual areas under three conditions: 'pursuit' of a small target, 'retinal motion' of a large background and 'pursuit + retinal m...
متن کاملResponse properties of dorsolateral pontine units during smooth pursuit in the rhesus macaque.
1. The anatomical connections of the dorsolateral pontine nucleus (DLPN) implicate it in the production of smooth-pursuit eye movements. It receives inputs from cortical structures believed to be involved in visual motion processing (middle temporal cortex) or motion execution (posterior parietal cortex) and projects to the flocculus of the cerebellum, which is involved in smooth pursuit. To de...
متن کاملThe neuronal basis of on-line visual control in smooth pursuit eye movements
Smooth pursuit eye movements allow us to maintain the image of a moving target on the fovea. Smooth pursuit consists of separate phases such as initiation and steady-state. These two phases are supported by different visual-motor mechanisms in cortical areas including the middle temporal (MT), the medial superior temporal (MST) areas and the frontal eye field (FEF). Retinal motion signals are r...
متن کاملDirect evidence for a position input to the smooth pursuit system.
When objects move in our environment, the orientation of the visual axis in space requires the coordination of two types of eye movements: saccades and smooth pursuit. The principal input to the saccadic system is position error, whereas it is velocity error for the smooth pursuit system. Recently, it has been shown that catch-up saccades to moving targets are triggered and programmed by using ...
متن کاملDeficits of smooth pursuit eye movements after frontal and parietal lesions.
To assess the contribution of the human frontal and parietal cortices to smooth pursuit (SP) eye movements, we recorded ocular motor responses to predictable (periodic) and unpredictable (step-ramp) foveal pursuit stimuli and to constant-velocity optokinetic full-field motion in 31 patients with chronic focal unilateral hemispheric lesions and in 50 age-related healthy adults, using infrared re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human brain mapping
دوره 36 12 شماره
صفحات -
تاریخ انتشار 2015